3.40 \(\int \sec ^5(c+d x) (a \cos (c+d x)+b \sin (c+d x)) \, dx\)

Optimal. Leaf size=44 \[ \frac{a \tan ^3(c+d x)}{3 d}+\frac{a \tan (c+d x)}{d}+\frac{b \sec ^4(c+d x)}{4 d} \]

[Out]

(b*Sec[c + d*x]^4)/(4*d) + (a*Tan[c + d*x])/d + (a*Tan[c + d*x]^3)/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0631878, antiderivative size = 44, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {3090, 3767, 2606, 30} \[ \frac{a \tan ^3(c+d x)}{3 d}+\frac{a \tan (c+d x)}{d}+\frac{b \sec ^4(c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^5*(a*Cos[c + d*x] + b*Sin[c + d*x]),x]

[Out]

(b*Sec[c + d*x]^4)/(4*d) + (a*Tan[c + d*x])/d + (a*Tan[c + d*x]^3)/(3*d)

Rule 3090

Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Sym
bol] :> Int[ExpandTrig[cos[c + d*x]^m*(a*cos[c + d*x] + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] &&
 IntegerQ[m] && IGtQ[n, 0]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 2606

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \sec ^5(c+d x) (a \cos (c+d x)+b \sin (c+d x)) \, dx &=\int \left (a \sec ^4(c+d x)+b \sec ^4(c+d x) \tan (c+d x)\right ) \, dx\\ &=a \int \sec ^4(c+d x) \, dx+b \int \sec ^4(c+d x) \tan (c+d x) \, dx\\ &=-\frac{a \operatorname{Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}+\frac{b \operatorname{Subst}\left (\int x^3 \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac{b \sec ^4(c+d x)}{4 d}+\frac{a \tan (c+d x)}{d}+\frac{a \tan ^3(c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.0823192, size = 41, normalized size = 0.93 \[ \frac{a \left (\frac{1}{3} \tan ^3(c+d x)+\tan (c+d x)\right )}{d}+\frac{b \sec ^4(c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^5*(a*Cos[c + d*x] + b*Sin[c + d*x]),x]

[Out]

(b*Sec[c + d*x]^4)/(4*d) + (a*(Tan[c + d*x] + Tan[c + d*x]^3/3))/d

________________________________________________________________________________________

Maple [A]  time = 0.079, size = 38, normalized size = 0.9 \begin{align*}{\frac{1}{d} \left ( -a \left ( -{\frac{2}{3}}-{\frac{ \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3}} \right ) \tan \left ( dx+c \right ) +{\frac{b}{4\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^5*(a*cos(d*x+c)+b*sin(d*x+c)),x)

[Out]

1/d*(-a*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+1/4*b/cos(d*x+c)^4)

________________________________________________________________________________________

Maxima [A]  time = 1.18939, size = 55, normalized size = 1.25 \begin{align*} \frac{4 \,{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a + \frac{3 \, b}{{\left (\sin \left (d x + c\right )^{2} - 1\right )}^{2}}}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*a + 3*b/(sin(d*x + c)^2 - 1)^2)/d

________________________________________________________________________________________

Fricas [A]  time = 0.458911, size = 116, normalized size = 2.64 \begin{align*} \frac{4 \,{\left (2 \, a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) + 3 \, b}{12 \, d \cos \left (d x + c\right )^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/12*(4*(2*a*cos(d*x + c)^3 + a*cos(d*x + c))*sin(d*x + c) + 3*b)/(d*cos(d*x + c)^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**5*(a*cos(d*x+c)+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.13837, size = 65, normalized size = 1.48 \begin{align*} \frac{3 \, b \tan \left (d x + c\right )^{4} + 4 \, a \tan \left (d x + c\right )^{3} + 6 \, b \tan \left (d x + c\right )^{2} + 12 \, a \tan \left (d x + c\right )}{12 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a*cos(d*x+c)+b*sin(d*x+c)),x, algorithm="giac")

[Out]

1/12*(3*b*tan(d*x + c)^4 + 4*a*tan(d*x + c)^3 + 6*b*tan(d*x + c)^2 + 12*a*tan(d*x + c))/d